<rt id="am2ic"><code id="am2ic"></code></rt><strike id="am2ic"><noscript id="am2ic"></noscript></strike>
  • <rt id="am2ic"><small id="am2ic"></small></rt>
  • <delect id="am2ic"></delect>
    <dd id="am2ic"><s id="am2ic"></s></dd>
    當(dāng)前位置: 主頁 > 英語 >

    2017考研數(shù)學(xué):高數(shù)必考8大基礎(chǔ)知識(shí)點(diǎn)

    2016-05-27 16:17 | 太奇MBA網(wǎng)

    管理類碩士官方備考群,考生互動(dòng),擇校評(píng)估,真題討論 點(diǎn)擊加入備考群>>

      1.函數(shù)、極限與連續(xù)

      重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。

      2.一元函數(shù)微分學(xué)

      重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。

      3.一元函數(shù)積分學(xué)

      重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。

      4.向量代數(shù)與空間解析幾何(數(shù)一)

      主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。

      5.多元函數(shù)微分學(xué)

      重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。

      6.多元函數(shù)積分學(xué)

      重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。

      7.無窮級(jí)數(shù)(數(shù)一、數(shù)三)

      重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。

      8.常微分方程及差分方程

      重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。

      相關(guān)鏈接:

      MBA2017入學(xué)考試輔導(dǎo)招生簡(jiǎn)章

    返回頂部
    亚洲福利精品久久久久91,五月婷婷国产在线,亚洲精品无码久久久久久,91久久性奴调教国产免费网址 天天躁日日躁久久 中文字幕人妻高清中字
    <rt id="am2ic"><code id="am2ic"></code></rt><strike id="am2ic"><noscript id="am2ic"></noscript></strike>
    • <rt id="am2ic"><small id="am2ic"></small></rt>
      • <delect id="am2ic"></delect>
        <dd id="am2ic"><s id="am2ic"></s></dd>